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Graded contractions of Casimir operators 
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t Centre de Recherches Mathematiques. Universite de Montdal, CP 6128-A, M o n W ,  
Quebec H3C 317, Canada 

Received 29 January 1993 

Abstract. We describe graded contractions of Casimir operaton of Lie algebras. The formalism 
applies to any Casimir operator given as a symmetric form. We deal with the q u W c  Casimir 
operator in exhaustive detail and indicale the modifications for operators of higher degree. 

1. Introduction 

Contractions of Lie algebras are of interest in physics since they provide a natural way for 
passing from one group of symmetries to another similar, but not otherwise directly related, 
group of symmetries. The traditional approach to this subject goes under the name of Wigner- 
Inonii [I] contractions. Recently, a very different approach [2,3] has been developed involving 
theconcept of grading-it includes the Wigner-Inonii contractions and many more. In addition 
to graded contractions ofalgebras, gradedcontractions ofrepresentations and of tensor products 
have also been obtained. 

In this paper we address the question of graded contractions of Casimir operators, which 
involv& grading the universal enveloping algebra. We consider Casimir operators C(') given 
as symmetric and homogeneous of degree k polynomials in the generators. Whether the 
formalism can be extended to generalized Casimir operators, given by more complicated 
functions of the generators, is an open question. 

The Lie algebras L that we consider here are over the real or complex number field ind 
the grading group G is any cyclic group. We wish to stress the extreme generality of the 
formalism: we treat simultaneously all Lie algebras that admit a chosen grading. In particular, 
oneneeds neitherto fixthedimensionofthealgebra(finiteorinfinite)nortomakeadistinction 
between a Lie algebra and a Lie superalgebra. 

In section 2 we give a brief summary of graded contractions of Lie algebras and in section 3 
deal with the grading of the universal enveloping algebra and the Casimir operators. Our main 
results are given in section 4, where we describe graded contractions of the quadratic Casimir 
operator. Section 5 is devoted to contractions of Casimir operators of higher degree. 

2. Graded Contractions of Lie algebras 

Graded contractions are defined as contractions which preserve a chosen grading. 
A grading of a Lie algebra L by a cyclic group G of order N implies the following: 

(1) The Lie algebra is decomposed as a linear space into a direct sum of (grading) subspaces 

L = $Lj 
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which are eigenspaces of the action of the generating element g of G on L, 

L, = ( X I X  E L ,  gxg-’ = eZnij”x) . (2.2) 

(2) The commutation relations in L have a graded structure, i.e. for every choice of elements 
x E Lj and y E L k  we have 

[ x ,  Y l  = z (2.3) 

where z belongs to the grading subspace Lj+k as long as the commutator differs from zero. 
We write for (2.3) symbolically 

o # [ L j , L k ]  &Lj+k .  (2.4) 

Throughout this paper all grading labels are to be read mod N ,  where N is the order of 

The contraction L‘ of L is defined by modification of the commutators of L. We define 
the cyclic group G .  

[LIT Lk], cjk [L j ,  Lk] & EjkLjik. (2.5) 

Thus, thecontracted commutator isgiven by the uncontracted commutator multiplied explicitly 
by the contraction parameter E j k .  It follows from this definition that 

6 j k  = ckj . (2.6) 

The familiar Wigner-Inonii contractions are specializations of (2.5) in two ways at once: the 
grading group is Zz and for 6 j k  one uses the ansatz 

Ejk  = ajak/aj+t. (2.7) 

The parameters Ejk are not all free as the contracted commutators must satisfy the Jacobi 
identity. This leads to the requirement 

%nfj,k+m = Emjfk,m+j = Ejkfm,j+k. (2.8) 

The solutions of the above equations provide the contractions Le of any Lie algebra L graded 
by G .  One class of solutions is given by the Wigner-Inonii ansatz in (2.7). Equations (2.8) 
apply to the generic case. In the special case when some of the commutators vanish identically 
(i.e. for every choice of elements from the grading subspaces) the corresponding equalities 
have to be omitted from (2.8). 

3. The universal enveloping algebra 

By definition, Casimk operators are polynomials in  the generators of L, which commute with 
all the generators. They are therefore in the universal enveloping algebra U(L) consisting of 
1 and multinomials in the generators. The grading of L,  (2.2), provides a G-grading of U ( L ) :  

u=euj. (3.1) 
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As is clear from the definition, any linear combination of Casimir operators is again a Casimir 
operator so that some convention for defining a basis is needed. Let C denote a particular 
member from a basis of Casimir operators. Our first result is that C belongs to a single grading 
subspace of U, 

C E Ut for some e .  (3.2) 

To prove this we suppose that instead we have, say, 

C = A + B  A E U ~  B E U ~  e # k .  (3.3) 

Since C is a Casimir operator it commutes with all z E L,  for all m: 

[z, AI + Lz, Bl = 0. (3.4) 

But 

[z, AI E um+t [z, B1 E UmtK (3.5) 

so that the two terms in (3.4) cannot cancel each other but must each vanish. That means that 
A alone and B alone is a Casimir operator, in contradiction with the assumption that C was a 
member of a basis. 

The formalism we are about to describe is applicable for the grading label e in (3.2) having 
any allowed value. The details, however, simplify for e = 0. We observe that e must be zero 
if the grading group G arises from an inner automorphism of the Lie algebra L.  In that case 
the grading element g E G is some function of the generators of L and therefore commutes 
with the Casimir operator C. If the grading group G arises from an ouzer automorphism, e 
need not be zero. 

4. Contraction of the quadratic Casimir operator 

We now describe the formalism in detail on the example of the quadratic Casimir operator 
C". To be specific, we suppose that the grading group G is ZN and that 

c(" E U0 . (4.1) 

Quite explicitly we have 

where [ . J denotes the greatest integer function and 

(4.2) 

(4.3) 

It is crucial to our argument that C"' is a symmetric homogeneous of degree two polynomial 
in the generators; any other details of its structure are irrelevant. 



5624 A M Bincer and J Patem 

Being a Casimir operator means that we have for all z E L, for all m 

[ z ,  c(*)] = 0 (4.4) 

i.e. 

where 

Now consider a particular term in (4.5), say Qag. It is a sum of symmetxized products of 
a generator from L,  and a generator from Lg.  Therefore it cannot possibly cancel against 
any other term in (4.5) except for the terms Qgm. Rug and RI., assuming that such terms are 
present for the particular values of CY and ,¶. We find that (4.5) breaks up into the following 
equations: 

Qai~ + Qgm = O  Rob + R h  = 0 Rub + Qh = 0 

%E + R B ~  + Q.s = 0 %B + Q.s + Q s ~  = 0 (4.8) 

RAB + RBA + QAB + Q S A  = 0 

where for N = 2p we have 

O < a , b < p  p < a , , ¶ < 2 p  A , B = O o r p  (4.9) 

while for N = 2 p  + 1 we have 

O . c a , b < p  p < a . , 9 $ 2 p  A , ! 3 = 0 .  (4.10) 

The sum of the subscripts in (4.8) is always equal tom and the number of equations in (4.8) 
for fixed m is equal to p + 1, except that for N = even and m = odd it is equal to p. 

Next we form the contraction Lf of the Lie algebra L by applying (2.5). We define the 
contraction C(2)f of the quadratic Casimir operator C(9 by 

(4.11) 

where the parameters fix are to be determined such that for all z E L, for all m we have 

(4.12) (2k - 0 [z,c I, - 
i.e. 
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We now make the crucial observation that the quantities Pk, -k ,  Qm+t , -k  and j7m-k.k are given 
by precisely the same expressions as for the uncontracted algebra, i.e. that the effect of the 
contraction is completely taken care of by the explicitly appearing p k ,  6mk and 6m.-k. To see 
this, consider, for example, Q,+k,-x. given before contraction by (4.6): 

Qm+k, -k  = (Uiyi f )''U') Ui E Lm+k y' E L - k  (4.14) 

where we have written for convenience ui for [ z .  xi]. 
The only way the piece xi uiyi can be affected by the contraction is if it is of the form 

C uiyi = uw - wu + other terms (4.15) 

since the commutator [U, w ]  could be modified by the contraction. However, then necessarily 

y U - wu - uw +other term (4.16) 

i.e. the commutator [u, w]  drops out upon the symmetrization inherent in the definition of 

Next we observe that, by the same argument as before, (4.13) actually breaks up into the 

i 

c i i -  i 

Qm+k.-k. 

following equations: 

/ - - p E u + ~ , - ~ Q u p  + ~-a6a+~.-mQprz = 0 

CLb%+b.-b&b -k PaEo+b,--oRbn = 0 

(4.17) 
pb€u+b.-bR.b + p - d G + b , - ~ Q b ~  = 0 

PS&+B.B (ROB + Q O B )  + P . ~ + E . - ~ R B ~  = O  

I ~ s ~ ~ + E , B  (&E + Q ~ B )  + ~ - & + B , - . Q B ~  = 0 

PEEA+B.B (RAE + Q A B )  + @ A ~ A + B , A  (REA + Q B A )  0 

and we obtain explicit relations between the ps and the E S  by comparison with (4.8). (Note 
that in the last three equations of (4.17) we exploited the fact that A = -A, E = -E.) Thus, 
we find 

~ - ~ & + , B . - p  = p-&~+B,-e fibEa+b.-b = P&o+b.-a 

I*b&+b.-b = @-aEor+p.-u pE6a+B,B = !&&+E.-o (4.18) 

fiB'&+B.B = P-a6e+E,-a PA€A+B.A = P E ( A + B , B .  

Note that the first of these equations is empty for CY = @. the second is empty for a = b and 
the last is empty for A = B. These equations are valid in the so-called generic case when 

0 # [ L j ,  Lr] for all j and k. (4.19) 

In the special case when for some particular values of j and k the above Commutator vanishes 
identically (i.e. for every choice of elements from the grading subspaces) the tenus containing 
ejjk should be omitted from (4.18). 
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Quite explicitly suppose that the grading group is Z2. Then p = 1, the range of values 
of a, b ,  a. p is empty and we obtain in the generic case from the last equation of (4.18) for 
A = 0, B = 1 the single constraint 

PO6210 = p l E l l .  (4.20) 

The solutions of (2.5) for the possible contractions in the case of Z, are as follows [2,3]. there 
are two trivial solutions, 

(4.21) 

which determine no contraction L = Le, and Abelian Lf respectively, and three non-trivial 
ones 

0 0  .=(: :) (0 1) and (: :) 
where we use matrix notation E = ( E ~ x ) .  Correspondingly, we obtain from (4.20) 

E P 

PO = 0, pi arbitrary (: ;) 
p~g arbitrary, p1 = 0 (: ;) 

(4.22) 

(4.23) 

(; :) arbitrary, arbitrary. 

As a second example we take for the grading group Zs.  Now again p = 1 and the values of 
the grading labels are 0.1 and 2, i.e. we have one A-type (0). one a-type (1) and one a-type (2) 
label. Hence we obtain in the generic case from (4.18) the three constraints 

PIE02 = / L l € O I  h E 1 O  = p I E I 2  potm = PIE221 . (4.24) 

Now there are, for the generic case, 13 non-trivial solutions of (2.5) which are listed in [2] and 
labelled from I to XIII. Using (4.24) we find 

€ !J 

I, n, m 
IV, V, VI, XII, XIII 

vu, VIII 

E, X, XI 

p~g = 0, PI arbitrary 

PO arbitrary, pi arbitrary 

PO = 0, PI = 0 

PO arbitrary, PI = 0 

which illustrates the variety of possibilities that can result from contraction. 

(4.25) 
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5. Contraction of Casimir operaton of higher degree 

We explain the procedure for treating Casimiu operators of higher degree on the example of 
the cubic Casimir CO), which should make clear the generalization to any degree. Let 

5627 

Equation (5.5) is the analogue of (4.5) for the quadratic Casimir. The sum in (5.5) can be 
rearranged into 

where E, means a sum over permutations of s, t and p. For the same reasons as discussed in 
connection with (4.5) we have now that (5.9) breaks up into the system of equations 

(5.10) 
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where we have one such equation for every allowed choice of s, t and p. Equation (5.10) is 
the analogue of (4.8). Just as in that case, for any given choice of s, f and p not every Q ,  R 
or S need be present nor every permutation of s, t and p need occur. 

We next define the contraction CO)€ of the cubic Casimir CO) by 

A M Bincer and J Patera 

(5.11) 

with the p~,,, given by the requirement that for every U E L, for all r we must have 

[U, C(3)(]< = 0 (5.12) 

i.e. 

p k t m  ( + k Q r t k . C . m  + E r e & . r t e . m  + E r m S ~ . t . r t m )  = 0 (5.13) 
k + t t m = j  

which is the analogue of (4.13). Finally, by using the relations (5.10) in (5.13) we obtain a 
system of equations in the Casimir contraction parameters &tm and the Lie algebracontraction 
parameters ~ , k ,  E,!, and E,, only-the analogue o f  (4.18). 
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